Datamining

Etude de l'occurence d'une maladie cardiaque sur des patients

Image credit: Astuces aides informatiques
Cette étude a pour objectif de mettre en place un modèle permettant de prédire si un patient quelconque pouvait avoir une certaine maladie cardiaque au regard de certaines caractéristiques (âge, sexe, pression artérielle, taux de cholestérol, etc.) La variable cible est celle qui indique la présence ou non d’une maladie cardiaque chez un individu. Ainsi, nous avons cherché à déterminer les caractéristiques des individus atteints par cette maladie afin de pouvoir les regrouper en classes en utilisant différentes méthodes. Pour ce faire, après avoir présenté les données de notre étude et effectué des analyses descriptives, nous avons testé différentes méthodes de Data Mining (SVM, régression logistique, classification par arbre de décision, K-means...). Durant cette phase, il est ressorti que la régression logistique était le modèle le plus performant. Par la suite, nous nous sommes consacrés à ce modèle pour établir nos résultats.

Outils utilisés : R et latex

Partager sur :
Mamoudou KOUME
Mamoudou KOUME
Data Scientist Researcher

I am mainly interested in Mathematics and Artificial Intelligence as a whole but more particularly in Machine Learning, Bayesian statistics, Natural Language Processing, Optimization processes (Gradient descent, Gradient boosting...), Signal processing, Inverse problems, and Parsimonious representations.

comments powered by Disqus

Related