
Project report

Application of Tensorflow, K-nearest neighbor and
DBSCAN algorithms to particle laden turbulence

Authors :

Anis BNINI

Benoit GILLES

Yahia BRAIHEMAT

Mamoudou KOUME

Master 1, Applied Mathematics, Statistics Data Science’s Course

Under supervision of :

Kai SCHNEIDER

Professor at Aix-Marseille University

19th April 2021

Acknowledgements

We thank and express our gratitude to our supervisor Kai SCHNEIDER for all the
assistance and availability granted in the realization of this project report. We would
like to thank Thibault OUJIA, who helped us acquiring the data. We would also
like to thank Keigo Matsuda, who provided the data, and the Mesocentre and its
entire personnel. Our thanks also go to Aix-Marseille University as well as to those
responsible for the master’s degree in Applied Mathematics, Statistics, for having us
allowed to put into practice our acquired knowledge in a spirit of rigor and initiative
to produce this research. May all those who have contributed directly or indirectly to
the development of this project find our warm thanks here.

I

Abstract

We analyzed a total of 110 text files that contain the spatial distribution of particle
laden in turbulence, these files stem from a numerical simulation done by a supercom-
puter known under the name ”Earth Simulation” and based in Japan. Our objectives
were to characterize and identify the clusters formed from the droplets in turbulence
and to shed the lights about how it is conditioned by the Stokes number and Reyn-
olds Number that define these droplet particles . We also attempted from those files
to implement an image classification algorithm and to generate synthetic data.We
confirmed with DBScan that the number of clusters is negatively correlated with the
Stokes number. With a convolutional network built with Tensorflow, we could determ-
ine the Stokes Numbers with an accuracy of 79%, on the other hand, KNN clustering
guarantees a 100% accuracy on determining the Reynolds number of a sample. Both
OpenCV and DBScan show similar results at identifying the number of clusters. Over-
all, our results showcase the major role that plays the two parameters : Stokes and
Reynolds number in determining the shape of the clusters, these two parameters, with
the help of KNN clustering and neural networks, can be predicted from an image of a
sample flow with a high level of confidence, thus directly determining the number of
clusters.

II

Acronyms and abbreviations

AMICC : Aix-Marseille Intensive Computing Center

API: Application programming interface

CNN: Convolutional neural network

DBSCAN : Density-Based Spatial Clustering of Applications with Noise

DNS : Direct Numerical Simulations

eps : Epsilon

GAN: Generative adversarial network

KNN : K-Nearest Neighbors

minPts : Minimum number of points required to form a cluster

Ng : Number of Grid points (in cubic resolution)

OpenCV : Open Computer Vision

PCA: : Principal component analysis

Re : Reynolds number

St : Stokes number

TF : TensorFlow

WCSS : Within Cluster Sum of Squares

III

IV

Contents

Table of Contents VI

1 Introduction 1

2 General framework of the study 2
2.1 Context and origin of the data . 2
2.2 Data description . 3
2.3 Data visualization . 3
2.4 Explanation of parameters . 4

2.4.1 Reynolds number . 4
2.4.2 Stokes number . 5

2.5 Clustering . 6
2.5.1 Definition . 6
2.5.2 Cluster properties . 6
2.5.3 Clustering methods . 7

3 Application of the KNN/KMeans algorithms to particle-laden tur-
bulence 8
3.1 KMeans . 8

3.1.1 Definition . 8
3.1.2 How does the KMeans algorithm work ? 8
3.1.3 Deciding the number of clusters 8

3.2 K Nearest Neighbors . 14
3.2.1 Definition . 14

3.3 Results . 14
3.3.1 KMeans . 14
3.3.2 KNN . 15

3.4 Pros/Cons of KMeans and KNN . 17

4 Application of the DBSCAN algorithm to particle-laden turbulence 18
4.1 DBSCAN algorithm . 18

4.1.1 Interest of DBSCAN . 18
4.1.2 Cluster’s notion based on density 19
4.1.3 Identifying DBSCAN parameters 20
4.1.4 Abstract algorithm . 20
4.1.5 Advantages and disadvantages of DBSCAN 21

4.2 Clustering results . 22
4.2.1 Optimal epsilon value and minPts 22
4.2.2 Number of clusters . 23
4.2.3 Percentage of noise . 24

V

4.2.4 Cluster dimensions . 25
4.2.5 DBSCAN Cluster Evaluation : Silhouette method 27

5 Application of Tensorflow to particle-laden turbulence 29
5.1 About Image Classification . 29

5.1.1 Definition . 29
5.1.2 Convolutional Networks . 29

5.2 Classifying our Data . 31
5.2.1 Data pre-processing and parameterization 31
5.2.2 Data augmentation . 31
5.2.3 Building the model . 32
5.2.4 Training and visualising the model 32
5.2.5 Prediction . 34
5.2.6 Classifying by the Stokes and Reynolds number 34

5.3 Generating Synthetic Data . 35
5.3.1 Definitions . 35
5.3.2 Building and Training our GAN model 36
5.3.3 Evaluating the quality of our synthetic data 37

6 Conclusion 40

7 Appendix 41

Bibliography 50

VI

1 Introduction

Droplets-laden in turbulence are a natural phenomenon governed by the principles of
fluid mechanics. It is commonly observed in the environment for example in the form
of atmospheric aerosol particles, rainfall or during the occurrence of a cyclones. It it
also encountered in very wide processes of the industry, noticeably and among many
others in wastewater treatment or in a fluidized bed. It is therefore primordial to
have a great knowledge of the behavior of particle-laden turbulence, whether it is to
improve the efficiency and productivity while reducing the cost in the industry, or to
cope better with pollution and some natural disasters regarding the environment.[1][2]

A lot of research has been carried out so far on the topic, however due to the limitations
of the experimental tools and the complexity of the dynamics of these particles , there
remains many significant points outstanding noticeably regarding the dispersion of
these particles under turbulence, the literature assume that they tend to aggregate to
one another in some specific regions forming what we call clustering regions. There is
also the opposite effect that happens leading to zones -almost- void of particles. These
clustering regions if existent vary in size and shape. [3]
The particles are too of diverse size, there are two physical dimensionless numbers that
can characterize their behaviour in turbulence known as the Stokes number (St) and
the Reynolds number (Re). The way the particles cluster depends strictly on these
two numbers.

Throughout this study and with the use of multiple machine learning algorithms and
libraries (KNN- DBScan and TensorFlow) on the numerically simulated data, we have
set to ourselves the objective of improving our understanding about the formation of
these clusters and predict the behavior of these droplets in turbulence given some of
their physical properties. In the first chapter, we focused on identifying these clusters
and their size as well as the influence of both the Stokes and Reynolds number on
them using the k-nearest neighbors algorithm. The second chapter covered an identical
problematic but with a different approach, using DBSCAN this time. Finally in the
last chapter we intended to implement an image classification algorithm that predicts
the St and Re numbers of droplets-laden particles based on the image of their spatial
distribution, we also tried to generate synthetic spational data of particle laden in
turbulence with Tensorflow.

1

2 General framework of the study

2.1 Context and origin of the data

�Found abundantly in natural and engineered systems, small particles can alter fluid
turbulence due to thermal feedback and momentum. Particles of different sizes, shapes
and other variables can control the degree of interaction with the fluid. Namely, their
inertial characteristics, gravitational settling and mass fraction are sources of feedback
against fluid flow[4]�. For example, radar remote sensing can provide estimates of
the microphysical properties of clouds and precipitation particles [5]. The data used
in this study are direct numerical simulation of particle-laden homogeneous isotropic
turbulence by solving Navier-Stokes equations on supercomputers :

∂ui
∂xi

= 0,

∂ui
∂t

+
∂uiuj
xj

= − 1

ρa

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ Fi

(2.1)

where ui is the flow velocity in the ith direction, p is the pressure, ρa is the air density,
ν is the kinematic viscosity, and Fi is the external forcing term. The time integration
was calculated by the second-order Runge–Kutta scheme [5].

Droplets movements were simulated by tracking Lagrangian point-particle tracking
using the equation below :

dvi
dt

= −vi − ui
τp

+ gi (2.2)

where vi and gi are the particle velocity and gravitational acceleration in the ith dir-
ection, τp is the droplet relaxation time, which is given by :

τp =
ρp
ρa

2r2p
9ν

(2.3)

The data have been kindly provided by Dr. Keigo Matsuda. Access to those data was
granted after request by the mesocentre AMICC at Aix-Marseille university, one of
the high-performance computating centers in France.

2

2.2 Data description

In this study we analyze direct numerical simulation data of particle laden turbu-
lence within turbulent flows in a periodic box. The data were obtained by solving
the Navier-Stokes equations including inertial point particles on the Earth simulator,
the supercomputer at JAMSTEC in Yokohama, Japan. We consider inertial point
particle for different Reynolds numbers, which characterize the turbulence intensity
and different Stokes numbers which characterize the inertia of the particles. Low
Stokes numbers correspond to light particles, while large Stokes numbers correspond
to heavy particles. Note that both parameters, the Reynolds and the Stokes numbers
are non-dimensional numbers.

We have 110 files given in text format. Each of these files contains the particle positions
at a given time instant in either a three-dimensional cube, or in a 2 dimensional thin
slice.

2.3 Data visualization

Figure 2.1: Representation of 3D data for Reλ = 91 And St = 1 at a given time instant

3

2.4 Explanation of parameters

2.4.1 Reynolds number

In these experiments carried out in 1883 with the flow of a fluid in a straight cylindrical
pipe, Reynolds proved the existence of two flow regimes: laminar and turbulent. He
found, using different fluids and varying the flow rate and pipe diameter, that the para-
meter that determined whether the flow was laminar or turbulent was a dimensionless
number. Later, this number will be called the reynolds number.

The reynolds number is defined by the relation

Re =
v D

ν
(2.4)

v = characteristic velocity of the flow, D = pipe diameter, ν = Kinematic viscosity

The critical Reynolds number for internal flow is:


if Re < 2000, Laminarflow

if 2000 < Re < 4000, T ransientflow

if Re > 4000, laminarflow

Here the figure below, we have the different cases according to the value of the Reynolds
number.

Figure 2.2: Reynolds number and nature of flow

Source : https://www.simscale.com/docs/simwiki/numerics-background/what-is-the-
reynolds-number

4

The Reynolds number thus characterizes the turbulence intensity of the flow, flows with
Re < 1 are dominated by viscous effects and flows with Re >> 1 are highly turbulent
and dominated by inertial effects, reflected in vortices and a random behavior.

The computational domain was defined on a cube with edges of length 2πL0, where
L0 is the representative length scale. Periodic boundary conditions were applied in all
three directions. The domain was discretized uniformly into N3

g grid points.

The turbulence Reynolds number is calculated based on the Taylor microscale define
as [6] :

Reλ =
lλ urms
ν

where urms is the RMS value of the velocity fluctuations and lλ is the Taylor microscale
and the kinematic viscosity was set to 1.5× 10−5 m2 s−1.

The resolutions (Ng) were chosen to satisfy kmax lη ≈ 2, where kmax is the maximum
wavenumber given by kmax = Ng(2L0)

−1 and lη is the Kolmogorov scale, in [6] DNS
experiments the nondimensional energy dissipation rate was essentially the same for
all the flows.

The DNS was performed for two turbulent flows, each with a different value of the
Taylor-microscale-based turbulent Reynolds number :

Ng L0(m) urms Re Reλ kmaxlη
512 0.0400 0.345 909 204 2.02
1024 0.0666 0.499 2220 322 2.06

Table 2.1: Computational parameters for DNS and the statistical results

The number of droplets was set to 1.5×107 and 5×107 for Reλ = 204 and Reλ = 322,
respectively.

2.4.2 Stokes number

The Stokes number (St) is a dimensionless number used in fluid dynamics to charac-
terize the behavior of a particle in a fluid. It represents the relationship between the
kinetic energy of the particle and the energy dissipated by rubbing with the fluid.

This number is named after George Gabriel Stokes, an Irish physicist and mathem-
atician.

It is defined as:

St =
ρp d

2
P v

ν Lc
(2.5)

ρp = Particle density, d2p = Characteristic length of particle, v = Fluid speed, ν=
Dynamic fluid viscosity, Lc= Characteristic length

5

This number is used to determine the behaviour of a particle in a fluid in the face of
an obstacle, including whether the particle will bypass the obstacle by following the
movement of the fluid or whether it will hit the obstacle [7] and [8].

2.5 Clustering

2.5.1 Definition

Basically, a cluster is a collection of elements. Every set is distinct from the others. So
each element of a cluster has strong similarities with the other elements of the same
cluster, and must be different from the elements of other clusters [9]. Data clustering is
a method in data analysis that aims to divide a set of data into different homogeneous
�packets �, in the sense that the data of each subset share common characteristics,
which most often correspond to criteria of proximity (computer similarity) that we
define by introducing measures and classes of distance (usually Euclidean distance)
between objects.

2.5.2 Cluster properties

The criteria to be met by an unsupervised learning algorithm are less obvious to define
than in the case of supervised algorithms, where there is a clear task to accomplish.
This does not prevent the existence of measures of the performance of an unsupervised
algorithm [9]. A cluster is said to be relevant if it satisfies the following two important
properties :

• internal cohesion (objects belonging to this cluster are as similar as possible)

• external insulation (objects belonging to other clusters are the most distant
possible)

To verify these properties, we associate the cluster with notions of measurement (dis-
tance and similarity) by looking for its :

• density (mass of objects per volume unit)

• shape (concave, convex, hyperspheric...)

• dimension (size and radius/diameter)

• variance (degree of dispersion of objects in space)

• separation (compared to other cluster)

To check the requirements (homogeneity and separation) of a clustering, we can meas-
ure the silhouette coefficient which makes it possible to assess whether a point belongs

6

to the right cluster. For a given point x, the silhouette coefficient is given by [10] :

s(x) =
bl(x)− ak(x)

max(ak(x), bl(x))

where :

• ak(x) is the average distance from x to all other points in the cluster k;

• bl(x) is the smallest value that a(x) could take, if x were assigned to another
cluster l 6= k.

Also, the average separation of the clusters taken by pair can be expressed as follows :

S =
2

k(k − 1)

K∑
k=1

K∑
l=k+1

d(µk, µl)

where : d(µk, µl) is the separation of two clusters k and l seen as the distance between
their centroids (barycenter of points of a cluster).

2.5.3 Clustering methods

There are two main categories of clustering [9] :

• Hierarchical methods
The goal is to form a hierarchy of clusters. Depending on the top-down or
bottom-up approach chosen, we look for clusters that are specific to a certain
number of objects considered like similar.

• Partitioning methods
Here, the goal is to form a partition of the space of objects, according to a certain
criterion function, each partition then representing a cluster in this category.
Among these methods, we have :

– K-means

– DBSCAN

– clustering based on neural network, etc.

7

3 Application of the KNN/KMeans
algorithms to particle-laden tur-
bulence

In this part, we describe the two different algorithms, K Nearest Neighbors and
KMeans, and how to use them for our problem. The main goal of the project is
to identify and to characterize the clusters in particle laden turbulence and to analyze
the influence of the Stokes number and the Reynolds number of the flow. Each goal
will require one algorithm, and one strategy.

3.1 KMeans

3.1.1 Definition

KMeans is an unsupervised learning algorithm that partitions the data in clustering
problems into K clusters. It uses the Euclidean distance to calculate the proximity
between points, and tries to minimize the squared Euclidean distance between points
and the centroid of the clusters. The goal is to find the best centroids, and then
allocates every data point to the corresponding cluster, by keeping the WCSS as low
as possible.

3.1.2 How does the KMeans algorithm work ?

The first step in the KMeans algorithm is to define K random centroids. After they
have been generated, the algorithm does many iterations to optimize the position of
the centroids. Let us imagine one cluster contains five data points, and is defined by
one centroid. In the next iteration, the centroid location will becomes the mean of
the location of all the points in the current cluster. This way the algorithm tries to
stabilize itself while reducing the WCSS, which is defined in the next part. It either
stops when the algorithm has reached a stable position, which means the centroids are
perfectly located or when the number of iterations has reached a predefined limit.

3.1.3 Deciding the number of clusters

The elbow method

The first method we used to decide how many clusters we need to consider is the elbow
method. It uses the WCSS as its criteria, with WCSS =

∑Nc

i=1

∑
x∈Ci

d(x, x̃Ci
)2,

8

where Nc corresponds to the number of clusters, d is the Euclidean distance, and x̃Ci

is the centröıd of the cluster i [11]. After plotting the WCSS depending the number
of cluster, we look for an elbow curve and the location of a bend in the plot is generally
considered as an indicator of the appropriate number of clusters.

We created the following example of a result using the elbow method to find the
optimal number of cluster in a flow with St equal to 0.5 and Re equal to 2220 :

Figure 3.1: WCSS in function of the number of clusters, for a flow with Re = 2220 and
St = 0,5

In the figure 3.1, we can observe the WCSS as a function of the number of clusters.
In this scenario, both values three and four are correct for the number of cluster as we
can see that we can reduce the number of clusters from five to four and also from four
to three without increasing the WCSS too much. We limited the maximum number
of clusters to nine due to a huge prediction time. On top of that, we assumed that
since we obtained an elbow curve while having a range of one to nine for the number
of clusters it was not necessary to go any further.

The Gap Statistic Method

For the Gap Statistic method, we need to choose the value of K that maximises the
gap statistic.

9

Figure 3.2: Example of a result using the gap statistic method, Re = 2220 and St = 0,5

As we can see in the figure 3.2, the Gap statistic peaked when K is equal to two. Thus
it indicates that two should be the optimal number of clusters.

The Silhouette method

As written on Wikipedia, �Silhouette refers to a method of interpretation and valida-
tion of consistency within clusters of data. The technique provides a succinct graphical
representation of how well each object has been classified.

The silhouette value is a measure of how similar an object is to its own cluster (co-
hesion) compared to other clusters (separation). The silhouette ranges from -1 to +1,
where a high value indicates that the object is well matched to its own cluster and
poorly matched to neighboring clusters. If most objects have a high value, then the
clustering configuration is appropriate. If many points have a low or negative value,
then the clustering configuration may have too many or too few clusters.

Assume the data have been clustered via any technique, such as k-means, into K
clusters.

For a data point i ∈ Ci (data point i in the cluster Ci), let a(i) = 1
|Ci|−1

∑
j∈Ci,i 6=j d(i, j)

be the mean distance between i and all other data points in the same cluster, where
d(i, j) is the distance between data points i and j in the cluster Ci (we divide by |Ci|−1
because we do not include the distance d(i, i) in the sum). We can interpret a(i) as a
measure of how well i is assigned to its cluster (the smaller the value, the better the
assignment). We then define the mean dissimilarity of point i to some cluster Ck as
the mean of the distance from i to all points in Ck (where Ck 6= Ci). For each data
point i ∈ Ci, we now define b(i) = mink 6=i

1
|Ck|

∑
j∈Ck

d(i, j) to be the smallest (hence

the min operator in the formula) mean distance of i to all points in any other cluster,

10

of which i is not a member. The cluster with this smallest mean dissimilarity is said
to be the neighboring cluster of i because it is the next best fit cluster for point i. �

We then define the silhouette score as follows :

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

[12]

The silhouette value varies between -1 and 1. A high value for the silhouette score for
a number of cluster equal to K indicates that we should choose K as the optimum
value for the number of clusters for our sample.

Figure 3.3: Example of a result using the silhouette method, Re = 2220 and St = 0,5

In the example shown in figure 3.3, the optimal number of clusters is four as we observe
a peak for the silhouette score when the value of K is equal to four.

Cluster detection with the OpenCV Library

The main problem with the last three methods is the fact that the number of clusters
they give is too small. They basically divide the image created from one sample into
two or four clusters. Thus, no information was obtainable for the clusters. On top of
that, the computing time to obtain those results (i.e. to find the optimal number of
clusters) for only one sample was quite expensive, approximately 20 minutes for one
sample.

11

We then decided to find another way to detect clusters. We thought about creating
a dendrogram, but after our first attempt we had a memory issue, thus making this
solution not viable. After some research on the Internet, we decided to try to use
the OpenCV library and to detect the number of objects (i.e. clusters) in the images
created from our 2D samples.

�OpenCV is an open source computer vision and machine learning software library.
OpenCV was built to provide a common infrastructure for computer vision applications
and to accelerate the use of machine perception in the commercial products[13].�

Since python usually shows rectangular images, we needed to resize the images created
to visualize the data due to the fact that the data are 2d slices of a cubic box, so the side
lengths are the same. We went from rectangular images to square ones and following
is an example of a resized image.

Figure 3.4: Square image of a 2D slice of a sample flow, with Re = 909 and St = 1

Figure 3.4 shows a sample flow with the characteristics Re = 909 and St = 1. We can
observe voids and high density zones. Even if there are no major differences between
the two representations, the number of clusters detected with the OpenCV library
varied between rectangular images and square images. Those figures show the number
of objects detected for the different samples for square images :

12

Figure 3.5: Number of clusters detected with the OpenCV library, for Re = 909, as a
function of St

Figure 3.6: Number of clusters detected with the OpenCV library, for Re = 2220, as a
function of St

Figure 3.5 shows the number of clusters detected with the OpenCV library for the 2D
sample flows with Re equal to 909. We observe something interesting as our method
detects only one cluster for some samples with a Stokes number equal to 0,05. It can
be explained since a flow with this Stokes number has a high density of particle, thus
making it impossible to visually detect many clusters in our problem. It could be
interesting to analyse the distribution of those results with a higher range of Stokes
numbers. The number of clusters seems to peak for flows with a Stokes number equal
to 0,2 with a maximum value for the number of clusters detected equal to 600.

13

On the contrary, while analyzing the figure 3.6 which represents the number of clusters
detected with the OpenCV library for the 2D sample flows with Re equal to 2220, the
maximum number of detected clusters in one image peaks at 650, for a Stokes number
equal to 1. Those different results may be a consequence of the imprecision of the
object detection feature of the OpenCV library, for a huge number of points.

3.2 K Nearest Neighbors

3.2.1 Definition

The KNN algorithm is described as follows by Venkatesh Umamaheswaran : �Con-
trary to the Kmeans algorithm, the K Nearest Neighbors algorithm is a supervised
classification algorithm. It takes a bunch of labeled points and uses them to learn
how to label other points. To label a new point, it looks at the labeled points closest
to that new point which are its nearest neighbors, and has those neighbors vote. So
whichever label, the most of the neighbors have is the label for the new point [14].�

Here, we know the number of cluster K. Since we are going to apply the KNN
algorithm to classify our data regarding their characteristics, we can choose either the
number of different Reynolds numbers (2), or the number of different Stokes numbers
(7). Our entry data will be the 1D arrays from our initial data, and the result will be
either the Stokes number, or the Reynolds number associated to the 1D array.

First, we separate our data into training and testing data, with the ratio 40/60, and
we create our model. After fitting our training data to the model, we fit the testing
data, and test the accuracy of our model : For each input data, we look whether the
output given by the model corresponds or not to the real output, and then count the
correct number of output and divide it by the total number of input data.

3.3 Results

3.3.1 KMeans

Here is an example of an image representation of a sample flow with the different
clusters colorized :

14

Figure 3.7: Representation of colorized clusters in a sample flow with Re = 909 and St =
2, colors randomly generated to separate clusters

We can see various shapes and sizes for the clusters in the figure 3.7, each color
representing one cluster. Please note that the white zones correspond to voids. Other
colors has no meaning and were randomly chosen via a colormap from the library
matplotlib on Python. After comparing different representations of flows with different
characteristics, we did not find any interesting result. One thing to keep in mind is
that we are conscious that the method using OpenCV to detect objects and to assign
the detected number to the number of clusters is a visual method. It is not viable due
to the fact that it depends on the focus of the image, and not the similar properties of
multiple particles to detect clusters. However, this was the only method usable with
this algorithm due to the results with the other three commonly used methods, giving
a value for the optimum number of clusters between one and ten. Another result that
may be interesting is the difference between the figures 3.5 and 3.6. If we detect higher
numbers of objects while representing flows with a Reynolds number equal to 2220,
it will be maybe easier to cluster images of flow according to their Reynolds number
than according to their Stokes number. This result will be developed in the following
part.

3.3.2 KNN

We started by clustering our samples according to their Reynolds number. After
a first test, we obtained an accuracy of 60 percent approximately. It is not a bad
result, but we thought we could do better. We tried to change the distribution of the
training/testing data, but we merely gained few percent. So we pre-processed the data
: instead of taking our initial data, which consists of a scatter plot of more than 70,000
points, we tried to plot the data with the hist2D function, which in our case, consists
of separating the plot into rectangles and counting the number of particles inside each
rectangle. Following is an example of a modified image with the hist2D function :

15

Figure 3.8: Representation of a sample flow with Re = 909 and St = 5 separated in
50*50 bins, each bin colored according to the number of particles inside

In the figure 3.8, we modified a normal representation (such as the one in the figure
3.4) with the hist2D function, from Python. We capped the number of particles in
one square to 60, to avoid having scale problems. Following are some results obtained
while printing the accuracy of each model. The accuracy is obtained by comparing the
number of correct guesses from one model to the total number of tries. If we put 30
samples in the model, and only 15 were given the correct characteristics, the accuracy
will be equal to 50 percent.

Figure 3.9: Accuracy while training the model to determine the Stokes number of a
sample flow, inputting the non modified square images

Figure 3.10: Accuracy while training the model to determine the Stokes number of a
sample flow, inputting the modified square images with the hist2D function

Figure 3.11: Accuracy while training the model to determine the Reynolds number of a
sample flow, inputting the non modified square images

16

Figure 3.12: Accuracy while training the model to determine the Reynolds number of a
sample flow, inputting the modified square images with the hist2D function

As shown in the figures 3.9 to 3.12, the accuracy jumped from 60 percent to 100 percent
for the model trying to determine the Stokes number associated to a sample flow by
pre-processing the data. However, while trying to classify the data according to their
Stokes number, the best accuracy we could obtain was almost 30 percent, even after
applying the hist2D function to the image representation of the sample flows. Trying
other tools to pre-process the image representation of our data may be the key to a
higher accuracy.

3.4 Pros/Cons of KMeans and KNN

Both KNN and KMeans are really easy to understand and to implement in Python.
KNN allows to add data as it does not require training. However, both algorithms
have a high prediction cost for large datasets. With more than 70,000 points for
one data set, the time needed to calculate the distance between each point and their
corresponding centroid become quickly high. The main methods for determining the
optimal number of clusters do not work well too. On top of taking a lot of time, the
results may range from two to 15 clusters. This number was not high enough to give
information on clusters.

17

4 Application of the DBSCAN al-
gorithm to particle-laden turbu-
lence

Clustering algorithms belong to the class of unsupervised learning algorithms. There
are different clustering algorithms among which : hierarchical clustering, K-means,
and DBSCAN [10]. In this part of our study, the objective is to apply the DBSCAN
algorithm to particle-laden turbulence in order to determine the number of clusters,
percentage of noise points, cluster dimensions among others for each image grouping
droplets scattered in a two-dimensional space and regroup them according to the
values taken by Stokes number for each Reynolds number to be set a priori. Indeed,
DBSCAN is a good alternative to k-means when we do not know how many clusters
to expect in our data, but we know something about how points should be clustered
in terms of density (distance between points in a cluster). The DBSCAN algorithm
integrates a notion of cluster based on density makes it possible to discover clusters
of arbitrary form [9]. Morever, the choice of this algorithm was also made from a
practical point of view because the parameters which are necessary for it on the input
side can be related to physical parameters for example distance between two points
can be assimilated by their distances in space or in the plane depending on whether
the data is represented in a two or three-dimensional space.

4.1 DBSCAN algorithm

4.1.1 Interest of DBSCAN

The method of grouping a set of spatial objects into groups called �clusters� is known
as geospatial clustering. Many applications require spatial data management such as
SDBS (Spatial database systems). An increasing amount of data is obtained from
satellite images, X-ray crystallography or other automatic equipment. Thus, auto-
matic overdrafts more and more knowledge is needed in spatial databases. Well-known
clustering algorithms offer no solution for the combination of these requirements [15].
This is how the new clustering algorithm called DBSCAN appeared. DBSCAN (spa-
tial clustering based on the density of applications with noise) algorithm allows the
identification of classes, i.e. the grouping of the objects of a database into meaningful
subclasses. Otherwise, many clustering algorithms do not allow solving these prob-
lems. DBSCAN which integrates a notion of cluster based on density makes it possible
to discover clusters of arbitrary form. This algorithm requires only two input paramet-
ers so that the user can specify an appropriate value and proves to be a particularly
efficient even for large spaces database.

18

4.1.2 Cluster’s notion based on density

Hierarchical clustering and partitioning methods like K-means are very good for finding
spherical or convex shaped clusters. However, they are also greatly affected by the
presence of noise and outliers in the data. The goal of DBSACAN is to identify dense
regions, which can be measured by the number of objects close to a given point [16].

To better understand this notion of density-based clustering, it is necessary to define
these following terms [16] :

• Direct density reachable : a point M is directly density reachable from
another point N if M is in the ε-neighborhood of N and N is a core point.

• Density reachable : a point M is density reachable from N if there are a set
of core points leading from N to M .

• Density connected : Two points M and N are density connected if there are
a core point P , such that both M and N are density reachable from P .

• Core points : Core data points have at least minPts number of data points
within their epsilon distance.

• Border points : Border data points are on the outskirts as they are in the
neighborhood (ie. in epsilon distance of core point) but have less than the
required minPts.

• Outlier points : These points are not part of a neighborhood (ie. more than
epsilon distance) and are not border points. These are points located in low-
density areas.

A density-based cluster is defined as a group of density connected points.

Figure 4.1: DBSCAN demo

Source : towardsdatascience.com/explaining-dbscan-clustering-18eaf5c83b31

19

4.1.3 Identifying DBSCAN parameters

DBSCAN is an unsupervised algorithm that requires two hyper-parameters : ε (eps:
epsilon) and the minimum number of points required to form a cluster (minPts).
Ideally, we must know the appropriate eps and minPts of each cluster and at least
one point of the respective cluster. The parameter eps is the maximum radius of the
neighborhood. It is generally determined by the problem to solve (e.g. a physical
distance) and minPts is the desired minimum cluster size [17]. By denoting d the
distance from a point M to its k − th nearest neighbor, then the d-neighborhood of
M contains exactly k + 1 points for almost all points M . It contains more than k + 1
points if and only if several points have exactly the same distance d from M , which
is unlikely. In addition, changing the value of k for a point in a given cluster will not
result in large changes in the value of d. This only happens when the k − th nearest
neighbor of M for k = 1, 2, 3 . . . are located approximately on a straight line which is
generally not obvious for a point in a cluster [15].

Then the optimal value for ε can be chosen by using a k-distance graph, plotting the
distance (on the y-axis) to the k = minPts, by mapping each point (all the data
points in the x-axis) to the distance of its k − th nearest neighbor. By sorting the
points of the database in ascending order of their k − dist values, the graph obtained
gives an idea of the density distribution in the database. Experiments in [15] have
shown that k-dist graphs for k > 4 do not differ significantly from 4− dist graph and,
moreover, they require much more calculations. Therefore, we can set the minPts
parameter to 4 for all datasets (two-dimensional data). Subsequently, optimal eps
value (corresponds to critical change in the curve or �Elbow Method �) is obtained
such that a �sufficiently large �part of the points have a distance to its nearest neighbor
less than eps (�sufficiently large �means, for example, 95% or 99% of the points).

Much like the �Elbow Method �used to determine the optimal epsilon value the
minPts heuristic isn’t correct 100% of the time [18]. Usually the minPts can be
derived from the number of D dimensions in the dataset, such as minPts ≥ D+ 1 (or
minPts = 2∗D) [17]. With minPts ≤ 2, the result will be the same as for hierarchical
grouping with the single link metric, with the dendrogram cut at height ε. Therefore,
minPts should be chosen at least 3. Also, for datasets with noise, higher values of
minPts can be chosen and will result in more meaningful clusters.

4.1.4 Abstract algorithm

The implementation of the DBSCAN algorithm requires several steps which can be
summarized through the following pseudo algorithm :

1. Find the points in the ε (eps) neighborhood of every point, and identify the core
points with more than minPts neighbors.

2. Find the connected components of core points on the neighbor graph, ignoring
all non-core points

20

3. Assign each non-core point to a nearby cluster if the cluster is an ε (eps) neighbor,
otherwise assign it to noise

The DBSCAN algorithm can be used with any distance function (similarity functions
or other predicates). The distance function (dist) can therefore be considered as an
additional parameter. A pseudocode of the algorithm can be given as follows :

Figure 4.2: DBSCAN pseudo-algorithm

Source : wikipedia.org/wiki/DBSCAN#Algorithm

4.1.5 Advantages and disadvantages of DBSCAN

1. Advantages [17]

• Requires just two parameters

• Does not require a priori specification the number of clusters like KMeans

• Able to identify noise data while clustering and is robust to outliers

• Able to find arbitrarily size and arbitrarily shaped clusters

• Can separate high density data into small clusters

• Can cluster non-linear relationships (finds arbitrary shapes)

• The parameters minPts and ε can be set by a domain expert, if the data
are well understood

2. Disadvantages [17]

• Very sensitive to epsilon (ε) and minimum points (minPts) parameters

• Can suffer with high dimensional data

• Struggles to identify clusters within data of varying density (cannot cluster
data sets well with large differences in densities)

21

4.2 Clustering results

In this study, one of the objectives that we set ourselves is to use the DBSCAN
algorithm in order to find clusters of arbitrary shape based on the notion of dense
regions for all data files. As said previously, we have set the minimum number of
points (minPts) equal to 5 and the value of eps corresponding to its optimal value
already presented. We have done this for every dataset. In addition, we used the
average of the optimal values at the different times (corresponding to the 10 files for
a given Reynolds number and a given Stokes number), as being the optimal eps value
corresponding to the fixed Reynolds and Stokes parameters.

4.2.1 Optimal epsilon value and minPts

The choice of the epsilon parameter is very important to perform the DBSCAN al-
gorithm. We are based on the approach mentioned above in order to make an optimal
choice. Take the example for a Reynolds number (Re) equal to 909 and a Stokes
number equal to 0.1 at the a given time instant. By slicing the line so as to have
approximately 95% of the points which are at a distance from their nearest neighbors
less than eps, it is thus deduced that the value eps is equal to approximately 0.029.
The approach method is applied in all the other datasets available to us.

Figure 4.3: Optimal eps value for Re = 909 and St = 0.1 at the first instant

One way to choose the minPts would be to multiply by two the number of dimensions
of our dataset, i.e. 4. However, we arbitrarily set it to 5 despite the limited power of
our machines to perform these calculations.

In order to refine our analysis according Stokes number (St) and Reynolds number

22

(Re), we calculated the average value of the optimal eps because, for each Re con-
sidered, we have 10 files (.pos) corresponding to 10 different positions of the droplets
for each Stokes number for a fixed Re (909 and 2220).

Figure 4.4: Optimal eps value for each Stokes number for a given Reynolds number

Analysis of the graph above shows an increasing and a quasi-linear relationship between
the Stokes number and the optimal eps value for Re equal to 909. In addition, these
values fluctuate around 0.03 with an amplitude less than 0.001 compared to confidence
intervals (see appendix). Also, the analysis of the boxplots of the series of the optimal
values of eps for each Stokes number, does not detect any outliers within two signi-
ficant ones. Otherwise, the observation is almost the same for Re = 2220. The only
significant difference is that the values of optimal eps turn around 0.02 with almost the
same amplitude of variation. Also, theirs boxplot not only do not reveal the existence
of atypical points but also shows a good distribution of observations. Thus, we can
consider that this average constitutes a good indicator of the optimal ep value on the
set of files considered.

4.2.2 Number of clusters

Observation of the graph below shows that the number of clusters is much higher when
the Reynolds number is larger for any Stokes number. This suggests that the higher
the Reynolds number, the larger the number of clusters.

For Re = 909, the average number of clusters decreases to reach its minimum value
for St = 5. The decrease is much stronger for a Stokes number between 0.05 and 0.2.
Beyond this value, the number of clusters decreases slightly. We also obtain similar

23

results for Re = 2220 with the only difference that the rate of decrease is approximately
constant.

Figure 4.5: Number of clusters for each Stokes number for a given Reynolds number

Figure 4.6: Representation of colorized clusters in a sample flow with Re = 909 and
St = 2

4.2.3 Percentage of noise

As its name suggests, the DBSCAN algorithm is closely linked with the notion of
noise. These noise points are points that do not belong to any of the clusters. The

24

percentage of noise is equal to the ratio of the number of noise points and the total
number of points in the dataset.

We can notice that the percentage of noise points is slightly higher for Re = 2220 than
for Re = 909. In both cases, the percentage decreases with the Stokes number. On
the other hand, the decrease is faster between St = 0.05 and St = 0.5 for Re = 909
while the decrease is very weak for Re = 2220.

Figure 4.7: Percentage of noise for each Stokes number for a given Reynolds number

4.2.4 Cluster dimensions

To calculate the dimensions of the clusters we will try to find the circular or elliptical
shape that covers the majority of the particles belonging to each cluster. Once the
shapes are identified, we calculate their surfaces by determining the diameters of the
ellipse (the major and minor axes) -or the diameter of the circle in the case of a circular
shape-.

Figure 4.8: example of a cluster surrounded by an ellipse

25

Determining diameters is not always obvious. In the figure below, we notice that
we can have an oblique ellipse, so to calculate the diameters we apply a change of
reference frame - so that the center of the ellipse and that of the new reference frame
are superimposed - afterward we rotate the ellipse to have an ellipse that forms a plane
of axes parallel to the axes of reference, then the surface of the ellipse is given by :

S = πab with a =
max(xi)−min(xi)

2
and b =

max(yi)−min(yi)

2
.

Here is an example of a sample with the characteristics Re = 909 and St = 0.05 which
shows a different clusters colorized for a time instant:

Figure 4.9: Representation of colorized clusters in one sample

26

Influence of the Stokes number and the Reynolds number on the dimension
of clusters :
Since our data base contains 10 files (.pos) corresponding to 10 different time instant,
we decided to compute the average value of the dimension of clusters for each St and
Re, in this way it will be easier to study the Reynolds number variance according to
the dimension of clusters.

Figure 4.10: Dimension of clusters for each Stokes number for a fixed Reynolds number

The First thing we can observe in the graph above is that, when it comes to comparing
the results obtained for each Reynolds number, the dimensions of the clusters of the
data characterized by Re = 909 are larger than those of Re = 2220, so the clusters
in the first case have more surface than the ones in the second case for a fixed Stokes
number, as well as for all the Stokes numbers combined. Also, the largest mean surface
of clusters is reached when St = 2 for the two Reynolds numbers, which is coherent
with the previous result, since the noise points in case St = 2 are the lowest for both
Reynolds numbers in comparison to the remaining Stokes numbers for each Reynolds
number taken separately.

4.2.5 DBSCAN Cluster Evaluation : Silhouette method

As we have shown previously, this method measures the separability between clusters.
The silhouette coefficient is calculated using the mean intra-cluster distance (a) and
the mean nearest-cluster distance (b) for each sample. The silhouette coefficient for a

sample is (b−a)
max(a, b)

. It varies between -1 (worst classification) and 1 (best classification).

[19]

We will therefore wish to have a high score (i.e. closest to 1) which would indicate

27

that there is a low intra-cluster average distance (tight clusters) and a large mean
inter-cluster distance (well clusters separated).

This is how we apply this method on datasets in order to do the analysis according
to the Stokes number and the Reynolds number. In other words, for a fixed Reynolds
number, we would like to know how the silhouette coefficient varies according to the
Stokes number. Therefore, after checking the assumptions on representativeness, we
considered the average of the silhouette coefficients in each dataset for each given
Stokes number and Reynolds number fixed a prior.

Figure 4.11: Silhouette coefficient for each Stokes number for a given Reynolds number

The first observation we can make on this graph is that all the silhouette coefficients
are negative. They are also well above -1 (coefficients between -0.8 and -0.26). Thus,
we can say through these results that we would have a good clustering all the more
if many points belonging to given clusters were part of other neighboring clusters. In
other words, the clutering applied may not be the best given the concepts of cluster
separation and homogeneity.

Nevertheless, if we make the analysis according to the Stokes number and the Reynolds
number, we note that the higher Stokes number, the lower the silhouette coefficient is
for Re = 2220. While for Re = 909, the silhouette coefficient decreases for a Stokes
number between 0.05 and 0.2, then increases between 0.2 and 1 ends up decreasing
again between 1 and 5.

28

5 Application of Tensorflow to particle-
laden turbulence

Tensorflow (TF) is an open source library developed by Google that enables the user
to perform diverse machine learning tasks, it is often associated with the framework
Keras which is an Application Programming Interface (API) that permits to imple-
ment the complex functions of TF in a way that is more accommodating for the user.
One of the most popular uses of Tensorflow is to carry out some image classification
tasks, this is usually done by implementing a Convolutional neural network (CNN)
architecture.

In this section, our goal is to build a model that allows us to classify an image given
as an input into its accordingly Stokes and Reynolds numbers. Furthermore, we try to
generate synthetic data from the original files that contains the position of the droplets
at a point of time, this will be done using Generative Adversarial Networks (GAN).

We’ll attempt to achieve our two objectives by building multiple neural networks with
the help of Tensorflow and the high level integrated API of Keras.

5.1 About Image Classification

5.1.1 Definition

In a generic definition, image classification is the process that takes an image as an
input and outputs the predefined �classes� or the �labels� to which this particular
image belongs to, it is used in medical data analysis for instance. This process requires
to extract the features of the image (points, pixels, edges . . .) in order to observe
some patterns, we use the CNN architecture to conduct this task.

5.1.2 Convolutional Networks

�A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm
which can take as the input an image, assign importance (learnable weights and biases)
to various aspects/objects in the image and be able to differentiate one from the
other. The pre-processing required in a ConvNet is much lower as compared to other
classification algorithms. While in primitive methods filters are hand-engineered, with
enough training, ConvNets have the ability to learn these filters/characteristics.[22]�

29

Figure 5.1: CNN Architecture

Source : https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53

The process of extracting the features of the input image is accomplished according
to the following steps :

• 1)The convolutional layer: We select a matrix called the filter that moves
along the matrix that contains the pixel values of our input image, we obtain in
the end feature maps in the form of a matrix that is smaller in shape than the
input matrix.

Figure 5.2: Image convolution with a filter

Source : https://jeanvitor.com/convolution-parallel-algorithm-python//

• 2) Relu (Activation function) : A non linear function that activates our
newly obtained matrix by increasing the non-linearity.

• 3) Pooling layer : Reduces the dimension of the feature maps and prevents
overfitting by saving only the relevant parts of the image. Later on, we’ll use the
Max Pooling layer that outputs the maximum value from the portion of image
covered by the filter.

• 4) Flattening layer : The last layer of the CNN, stores the values in a long
1-dimensional vector.

30

5.2 Classifying our Data

5.2.1 Data pre-processing and parameterization

We have initially a total of 110 square images of our droplets and 7 classes that
correspond to the 7 values of Stokes Number that characterize the droplets of our
dataset. We put the images in separate files according to their classes.

Figure 5.3: The classes of our dataset

We arbitrarily chose to withdraw the image �N512 st005pcl-021000 z-4eta.png� rep-
resenting a droplet’s position with the Stokes and Reynolds numbers respectively equal
to 0.05 and 909 in order to use it for a prediction test after we have trained the model.
We set the batch size at 16 and choose to use 70% of the images for training and 30%
for validation.

Figure 5.4: Partition of our dataset

5.2.2 Data augmentation

Given the small dataset available, it was preferable to expand it by using techniques of
Data Augmentation so as to increase the performances and accuracy of our model but
also to avoid the issues concerning overfitting. In particular we’ve decided to use the
layer �tf.keras.layers.experimental.preprocessing.RandomFlip� that flips each image
horizontally and vertically.

31

Figure 5.5: Data augmentation applied to the same image multiple times

5.2.3 Building the model

After going through these preliminary steps, it is time to build an architecture for our
CNN. We adopted a model composed of 3 convolutional layers between pooling layers
of the Maxpool type, finally we attach an activation layer at the end followed by a
flatten layer to convert the output into a one dimensional vector.

Figure 5.6: Architecture of our model

5.2.4 Training and visualising the model

At first we realize our training with a large epoch to determine where the overfitting
happens, we first set it at 100 :

32

Figure 5.7: Training of our model after 100 epochs

The plot shows the training loss function and validation loss function down trending
together until around 13 epochs. The validation loss function then starts abruptly
increasing while the training loss function is still steadily decreasing. We conclude
that the model starts overfitting from there on. After that point, the model efficiency
begins to weaken. It is therefore primordial to put an early stoppage before we pass
that point. We re-train out data with the number of epochs set at 13.

Figure 5.8: Training of our model with epoch=13

33

The model is still not the most optimal, we observe signs of overfitting (the validation
accuracy is on certain epochs above the training accuracy, sudden increase of the
validation error on the 7th epoch). However, the validation loss is even with the
training loss, steadily decreasing and they’re both seemingly converging to 0. We
also note that there isn’t a big margin between the training accuracy and validation
accuracy. At the end of the training we obtain an accuracy of 79%.

5.2.5 Prediction

We can now use the final model to predict the class of an untrained image, such as
the N512 st005pcl-01000 z-4eta.png that we have spared from training. Not only we
obtained the class or the Stokes number (0.05 in this case, the model got it right
and the prediction was correct), we also managed to obtain the correctness of this
prediction known as the confidence which was valued at 90.40%.

Figure 5.9: Prediction of the class of our image

5.2.6 Classifying by the Stokes and Reynolds number

Similarly to what we did before, we have applied the same algorithm while considering
this time that we have 12 classes (or labels) instead of 7. We take into account in
the class both the Stokes number and the Reynolds number.

Figure 5.10: The classes of our dataset

We put aside the image �N512 st5pcl-028000 z-4eta.png� and we train the rest of the
images, after executing the algorithm we obtain a correct prediction once again but
with a lower confidence estimated at 57.20%.

Figure 5.11: Prediction of the class of our image

34

5.3 Generating Synthetic Data

With the intention of ameliorating our machine learning model for image classification,
we’ve resorted to generating synthetic data for the purpose of data augmentation to
have a larger training set. There are different deep-neural network algorithms well
suited for this task, we propose to use one of them known as the generative adversarial
networks (GANs), which are a type of neural network that lies under the field of
unsupervised training we’ll implement with Tensorflow and Keras.

5.3.1 Definitions

What is Synthetic Data?

Synthetic data is �any production data applicable to a given situation that are not
obtained by direct measurement�[23]. It is created with the help of algorithms in
a way it mirrors the statistical properties of an original data and reproduces the
distribution with the main goal of producing realistic replicates. It is widely used as
an anonymization technique to preserve the privacy, it can also be very useful to solve
data scarcity like in our case.

Generative adversarial network

GAN is a machine learning framework based on unsupervised learning that is able to
generate new data that mimics the original data and saves it structure. GANs are
composed of two neural networks that work in an adversarial style :

• The generator the model that produces the new data that preserves the stat-
istical characteristics of the original one.

• The discriminator the model that distinguishes between real and imitated
data.

How it works : �The generative network generates candidates while the discrimin-
ative network evaluates them. The contest operates in terms of data distributions.
Typically, the generative network learns to map from a latent space to a data distri-
bution of interest, while the discriminative network distinguishes candidates produced
by the generator from the true data distribution. The generative network’s training
objective is to increase the error rate of the discriminative network. . . Independ-
ent backpropagation procedures are applied to both networks so that the generator
produces better samples, while the discriminator becomes more skilled at flagging
synthetic samples� [24]

35

5.3.2 Building and Training our GAN model

We’re willing to generate synthetic data from the txt file corresponding to the particle
position at a given time for St=5 and Re = 1024, the txt file is named �pcl-0150000 z-
4eta.txt�.

First of all we set a standard batch size of 32. The generator function takes some
random noise as an input to produce the images. The architecture of this function is
represented by an input layer that characterize the noise and 4 activation layers with
128,256,512,3 neurons .

Figure 5.12: Architecture of the Generator

As for the discriminator, the architecture defined by an input layer, 4 activation layers
with 512,256,,128,1 neurons with the last layer having a Sigmaoid activation instead
of relu, eventually we add 2 dropout layers to prevent overfitting.

Figure 5.13: Architecture of the Discriminator

The architecture we’ve built was inspired from a paper about fraud detection in bank-
ing using GANs [25]

After establishing the architecture, we train the GAN model up to 5000 epochs.

36

Figure 5.14: Training of our GAN model

The model seems to have stabilized and we obtain an accuracy of about 70% on average
after 5000 epochs.

5.3.3 Evaluating the quality of our synthetic data

We save the synthetic data our generator has published on a csv file

Figure 5.15: The head of our New data, contains 135000 line in total

Aiming to compare the quality of our generated data, we’ll use for the rest of this
section the package table-evaluator on python [26] to have indications about how close
we are to the actual data.

37

We compare the mean and the standard error between the generated (on the y-axis
) and original data (on the x-axis)

Figure 5.16: Mean and SD of our data

We observe a straight line. The equation that characterizes this line is the trivial

x = y (5.1)

On both the mean and the standard error, the data we generated has successfully
retained these two statistical properties of the original data.

However this is not enough, we should look up thoroughly other details, beginning by
the cumulative sum of the position of the particles (on the x, y and z axis)

Figure 5.17: Cumulative sum of our data

The repartition of particles in the z-axis compared to the original one is decent. This
is unfortunately not the case for the x and y axis in which we note many irregularities,

38

especially regarding the small values. We do also register that the position of the
particles in the x and y axis can take values way superior than in the original data.
This newly generated data doesn’t seem to recreate the original data exactly.

Finally we have a first two component analysis to have a better overview of the posi-
tioning of the 135 000 particles of our generated data

Figure 5.18: Two-dimensional PCA

Despite many shared properties, there are visibly many flaws in our obtained data, our
model requires a surirgical precision for the generated data to be used as supplementary
in the training set, exploiting this generated data for image classification as a training
set will only hinder the process.

39

6 Conclusion

This research work on particle-laden turbulence has enabled us to apply three different
machine learning methods (Tensorflow, KNN and DBSCAN) in order to form clusters
but also to be able to analyze the dependence that exists between the Reynolds number
and the Stokes number in the interactions that exist between the polydisperse cloud
droplets. These particles in turbulence are from a three-dimensional direct numerical
simulation of particle-laden isotropic turbulence [6].

We managed to obtain some results when clustering the data using both KMeans and
KNN algorithms. While KMeans was useful when trying to partition particle in one
sample flow, we could not obtain precise information about the clusters created via the
different methods tested. On the contrary, using KNN allowed us to determine which
Reynolds number was associated to a fluid : we trained our model with the training
data and achieved an accuracy of 100 percent while inputting the remaining testing
data.

Regarding the DBSCAN results, after using KNN to compute optimal epsilon val-
ues and having formed the clusters, we focused on the aspects of these clusters in
particular their size, dimension, percentage of noise as well as their homogeneity and
separation. The main goal is to see how the Stokes number and the Reynolds number
vary according to these properties. What we can draw from this analysis is that the
formation of clusters is closely related to these two physical parameters. Nevertheless,
DBSCAN algorithm presents some limits at the level of the silhouette coefficient which
presents low values thus translating a low homogeneity of the clusters independently
of the physical parameters.

As for Tensorflow, the trained model for image classification based on the Stokes
number reached an accuracy rate of 79% and passed the prediction test despite being
slightly overfitted. Besides, after training our GAN model, we generated artificial data
that maintained most of the properties of the original data, but due to an accuracy of
only 70%, it wasn’t sufficient enough to use it for data augmentation.

40

7 Appendix

Boxplots for DBSCAN algorithm

In the following, we highlight the results of the boxplots in order to account for the
symmetry, the dispersion or the centrality of the distribution of the values associated
with the two physical parameters which are the Reynolds number and the Stokes num-
ber. Also, these boxplots will allow us to account for the presence of extreme values
in the data series.

Figure 7.1: Box-plot of optimal eps of each St for Re = 909

41

Figure 7.2: Box-plot of optimal eps of each St for Re = 2220

Figure 7.3: Box-plot of number of clusters of each St for Re = 909

42

Figure 7.4: Box-plot of number of clusters of each St for Re = 2220

Figure 7.5: Box-plot of percentage of noise of each St for Re = 909

43

Figure 7.6: Box-plot of percentage of noise of each St for Re = 2220

Figure 7.7: Box-plot of silhouette coefficient of each St for Re = 909

44

Figure 7.8: Box-plot of silhouette coefficient of each St for Re = 2220

Figure 7.9: Box-plot of dimension of cluster of each St each St for Re = 909

45

Figure 7.10: Box-plot of dimension of clusters of each St for Re = 2220

46

Confidence intervals for DBSCAN algorithm

In order to quantify the area of uncertainty on our estimators, we have calculated the
confidence intervals for these last ones using the normal distribution. This allows us
to know the range of values within which we are 95% certain of finding the true value
we are looking for. It is calculated as :

Confidence Interval = x̄± t× (
s√
n

) (7.1)

where:

x̄: sample mean
t: t-value that corresponds to the confidence level (95%)
s: sample standard deviation
n: sample size

The confidence interval program in python is as follows :

Figure 7.11: Python confidence interval program

Ng/St 0.05 0.1 0.2 0.5 1 2 5
909 [0.0279,

0.0286]
0.029 [0.0299,

0.0306]
[0.0318,
0.0328]

[0.0327,
0.0335]

[0.0352,
0.0362]

[0.0368,
0.0398]

2220 X X X [0.0231,
0.0238]

[0.0238,
0.0249]

[0.0246,
0.0255]

[0.0262,
0.0275]

Table 7.1: Confidence interval of optimal eps

Ng/St 0.05 0.1 0.2 0.5 1 2 5
909 [0.0279,

0.0286]
0.029 [0.0299,

0.0306]
[0.0318,
0.0328]

[0.0327,
0.0335]

[0.0352,
0.0362]

[0.0368,
0.0398]

2220 X X X [0.0231,
0.0238]

[0.0238,
0.0249]

[0.0246,
0.0255]

[0.0262,
0.0275]

Table 7.2: Confidence interval of number of clusters

Ng/St 0.05 0.1 0.2 0.5 1 2 5
909 [0.0279,

0.0286]
0.029 [0.0299,

0.0306]
[0.0318,
0.0328]

[0.0327,
0.0335]

[0.0352,
0.0362]

[0.0368,
0.0398]

2220 X X X [0.0231,
0.0238]

[0.0238,
0.0249]

[0.0246,
0.0255]

[0.0262,
0.0275]

Table 7.3: Confidence interval of percentage of noise

47

Ng/St 0.05 0.1 0.2 0.5 1 2 5
909 [-0.297,

-0.267]
[-0.487,
-0.414]

[-0.598,
-0.528]

[-0.528,
-0.446]

[-0.481,
-0.440]

[-0.686,
-0.603]

[-0.806,
-0.738]

2220 X X X [-0.445,
-0.394]

[-0.446,
-0.395]

[-0.565,
-0.518]

[-0.812,
-0.783]

Table 7.4: Confidence interval of silhouette coefficient

Re/St 0.05 0.1 0.2 0.5 1 2 5
909 [0.0128,

0.0134]
[0.0140,
0.0154]

[0.0139,
0.0165]

[0.0149,
0.0172]

[0.0167,
0.0186]

[0.0177,
0.0223]

[0.0135,
0.0163]

2220 X X X [0.0083,
0.0089]

[0.0087,
0.0096]

[0.01,
0.0108]

[0.0066,
0.0079]

Table 7.5: Confidence interval of dimensions of Cluster

48

Python programs

Some pieces of python programs used to compute the DBSCAN algorithm.

Figure 7.12: Python program for recovering all files

Figure 7.13: Python program to determine optimal epsilon

Figure 7.14: Python program to compute DBSCAN algorithm

49

Bibliography

[1] “Study of tiny droplets could have big impact on industrial applications”. In:
(2012). url: https://www.princeton.edu/news/2012/02/22/less-more-
study-tiny-droplets-could-have-big-impact-industrial-applications.

[2] “Understanding tiny droplets can make for better weather forecasts”. In: (2016).
url: https://partner.sciencenorway.no/forskningno- norway- ntnu/

understanding-tiny-droplets-can-make-for-better-weather-forecasts/

1433409.

[3] Wall accumulation and spatial localization in particle-laden wall flows. 2012. url:
https://www.researchgate.net/profile/Francesco-Picano/publication/

236634353_Wall_accumulation_and_spatial_localization_in_particle-

laden_wall_flows/links/00b49518984e008206000000/Wall-accumulation-

and-spatial-localization-in-particle-laden-wall-flows.pdf.

[4] David Richter and al. “Rayleigh-Benard turbulence modified by two-way coupled
inertial, nonisothermal particles, Physical Review Fluids”. In: (2018).

[5] Keigo Matsuda and Ryo Onishi. “Turbulent enhancement of radar reflectiv-
ity factor for polydisperse cloud droplets”. In: (2019). url: https : / / acp .

copernicus.org/articles/19/1785/2019/acp-19-1785-2019.html.

[6] MATSUDA and al. Influence of microscale turbulent droplet clustering on radar
cloud observations. Atmos. Sci.71(10), 3569–3582., 2014.

[7] Nombre de Stokes. 2020. url: https://fr.wikipedia.org/wiki/Nombre_de_
Stokes.

[8] ANTONINOFERRANTE Aand SAID ELGHOBASHI. Reynolds number effect
on drag reduction in a microbubble-laden spatially developing turbulent boundary
layer. Cambridge University Press, J. Fluid Mech. (2005) vol. 543, pp. 93–106.,
2005.

[9] Benjamin DEVEZE and Matthieu FOUQUIN. DATAMINING C4.5 - DBSCAN.
2004.

[10] https://penseeartificielle.fr/clustering-avec-lalgorithme dbscan/. “Clustering avec
l’algorithme DBSCAN”. In: (2019).

[11] Jiwon Jeong. “Who Is Your Golden Goose?: Cohort Analysis”. In: (2019). url:
https://towardsdatascience.com/who-is-your-golden-goose-cohort-

analysis-50c9de5dbd31.

[12] Silhouette (clustering). 2021. url: https://en.wikipedia.org/wiki/Silhouette_
(clustering).

[13] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

50

https://www.princeton.edu/news/2012/02/22/less-more-study-tiny-droplets-could-have-big-impact-industrial-applications
https://www.princeton.edu/news/2012/02/22/less-more-study-tiny-droplets-could-have-big-impact-industrial-applications
https://partner.sciencenorway.no/forskningno-norway-ntnu/understanding-tiny-droplets-can-make-for-better-weather-forecasts/1433409
https://partner.sciencenorway.no/forskningno-norway-ntnu/understanding-tiny-droplets-can-make-for-better-weather-forecasts/1433409
https://partner.sciencenorway.no/forskningno-norway-ntnu/understanding-tiny-droplets-can-make-for-better-weather-forecasts/1433409
https://www.researchgate.net/profile/Francesco-Picano/publication/236634353_Wall_accumulation_and_spatial_localization_in_particle-laden_wall_flows/links/00b49518984e008206000000/Wall-accumulation-and-spatial-localization-in-particle-laden-wall-flows.pdf
https://www.researchgate.net/profile/Francesco-Picano/publication/236634353_Wall_accumulation_and_spatial_localization_in_particle-laden_wall_flows/links/00b49518984e008206000000/Wall-accumulation-and-spatial-localization-in-particle-laden-wall-flows.pdf
https://www.researchgate.net/profile/Francesco-Picano/publication/236634353_Wall_accumulation_and_spatial_localization_in_particle-laden_wall_flows/links/00b49518984e008206000000/Wall-accumulation-and-spatial-localization-in-particle-laden-wall-flows.pdf
https://www.researchgate.net/profile/Francesco-Picano/publication/236634353_Wall_accumulation_and_spatial_localization_in_particle-laden_wall_flows/links/00b49518984e008206000000/Wall-accumulation-and-spatial-localization-in-particle-laden-wall-flows.pdf
https://acp.copernicus.org/articles/19/1785/2019/acp-19-1785-2019.html
https://acp.copernicus.org/articles/19/1785/2019/acp-19-1785-2019.html
https://fr.wikipedia.org/wiki/Nombre_de_Stokes
https://fr.wikipedia.org/wiki/Nombre_de_Stokes
https://towardsdatascience.com/who-is-your-golden-goose-cohort-analysis-50c9de5dbd31
https://towardsdatascience.com/who-is-your-golden-goose-cohort-analysis-50c9de5dbd31
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://en.wikipedia.org/wiki/Silhouette_(clustering)

[14] Venkatesh Umamaheswaran. “Comprehending K-means and KNN Algorithms”.
In: (2018). url: https://becominghuman.ai/comprehending-k-means-and-
knn-algorithms-c791be90883d.

[15] Martin Ester and al. A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. Institute for Computer Science, University
of Munich, 1996.

[16] Statistical tools for high-throughput data analysis. “DBSCAN: density-based
clustering for discovering clusters in large datasets with noise - Unsupervised
Machine Learning”. In: (). url: http://www.sthda.com/english/wiki/wiki.
php?id_contents=7940.

[17] Wikipedia. “DBSCAN”. In: (2021). url: https://en.wikipedia.org/wiki/
DBSCAN.

[18] Kelvin Salton. “How DBSCAN works and why should we use it?” In: (2017).
url: https://towardsdatascience.com/how- dbscan- works- and- why-

should-i-use-it-443b4a191c80.

[19] Shritam Kumar Mund. “How does DBSCAN clustering algorithm work?” In:
(2019). url: shritam.medium.com/how-dbscan-algorithm-works-2b5bef80fb3.

[20] Indraneel Dutta Baruah. “Cheat sheet for implementing 7 methods for select-
ing the optimal number of clusters in Python”. In: (2020). url: https : / /

towardsdatascience.com/cheat-sheet-to-implementing-7-methods-for-

selecting-optimal-number-of-clusters-in-python-898241e1d6ad.

[21] url: https://creativecommons.org/licenses/by-sa/3.0/deed.fr.

[22] Sumit Saha. “A Comprehensive Guide to Convolutional Neural Networks —
the ELI5 way”. In: (2018). url: https : / / towardsdatascience . com / a -

comprehensive- guide- to- convolutional- neural- networks- the- eli5-

way-3bd2b1164a53.

[23] “Synthetic data”. In: (2020). url: https://en.wikipedia.org/wiki/Synthetic_
data.

[24] “Generative adversarial network”. In: (2020). url: https://en.wikipedia.
org/wiki/Generative_adversarial_network.

[25] Anubha Pandey-Deepak Bhatt-Tanmoy Bhowmik. Limitations and Applicability
of GANs in Banking Domain. 2020. url: http://ceur-ws.org/Vol-2692/
paper1.pdf.

[26] 2020. url: https://package.wiki/table-evaluator.

51

https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-c791be90883d
https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-c791be90883d
http://www.sthda.com/english/wiki/wiki.php?id_contents=7940
http://www.sthda.com/english/wiki/wiki.php?id_contents=7940
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/DBSCAN
https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80
https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80
shritam.medium.com/how-dbscan-algorithm-works-2b5bef80fb3
https://towardsdatascience.com/cheat-sheet-to-implementing-7-methods-for-selecting-optimal-number-of-clusters-in-python-898241e1d6ad
https://towardsdatascience.com/cheat-sheet-to-implementing-7-methods-for-selecting-optimal-number-of-clusters-in-python-898241e1d6ad
https://towardsdatascience.com/cheat-sheet-to-implementing-7-methods-for-selecting-optimal-number-of-clusters-in-python-898241e1d6ad
https://creativecommons.org/licenses/by-sa/3.0/deed.fr
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/wiki/Synthetic_data
https://en.wikipedia.org/wiki/Synthetic_data
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
http://ceur-ws.org/Vol-2692/paper1.pdf
http://ceur-ws.org/Vol-2692/paper1.pdf
https://package.wiki/table-evaluator

	Table of Contents
	Introduction
	General framework of the study
	Context and origin of the data
	Data description
	Data visualization
	Explanation of parameters
	Reynolds number
	Stokes number

	Clustering
	Definition
	Cluster properties
	Clustering methods

	Application of the KNN/KMeans algorithms to particle-laden turbulence
	KMeans
	Definition
	How does the KMeans algorithm work ?
	Deciding the number of clusters

	K Nearest Neighbors
	Definition

	Results
	KMeans
	KNN

	Pros/Cons of KMeans and KNN

	Application of the DBSCAN algorithm to particle-laden turbulence
	DBSCAN algorithm
	Interest of DBSCAN
	Cluster's notion based on density
	Identifying DBSCAN parameters
	Abstract algorithm
	Advantages and disadvantages of DBSCAN

	Clustering results
	Optimal epsilon value and minPts
	Number of clusters
	Percentage of noise
	Cluster dimensions
	DBSCAN Cluster Evaluation : Silhouette method

	Application of Tensorflow to particle-laden turbulence
	About Image Classification
	Definition
	Convolutional Networks

	Classifying our Data
	Data pre-processing and parameterization
	Data augmentation
	Building the model
	Training and visualising the model
	Prediction
	Classifying by the Stokes and Reynolds number

	Generating Synthetic Data
	Definitions
	Building and Training our GAN model
	Evaluating the quality of our synthetic data

	Conclusion
	Appendix
	Bibliography

